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1. French 6-9.
(a.) The lowest resonant frequency of a room
is 50 Hz. All integer multiples of this frequency
are also resonant. The lowest two modes are ex-
cited. These are 50 Hz (the fundamental) and
100 Hz (the [first] harmonic). The amplitude is
maximum at t = 0. The time interval t = 1/200
sec is one fourth of a period for the fundamental
and half a period for the harmonic. t = 1/100sec
is one half of a period for the fundamental and a
full period for the harmonic. These modes look
like

(b.) We can write the total displacement as

ξ(x) = A1 sin (πx/L) cos (100πt)+
+ A2 sin (2πx/L) cos (200πt)

where A1 and A2 are the unknown amplitudes
for the fundamental and harmonic mode, respec-
tively. In particular

ξ(L/2) = A1 cos (100πt) + 0

ξ(L/4) =
A1√

2
cos (100πt) + A2 cos (200πt)

ξ(3L/4) =
A1√

2
cos (100πt) −A2 cos (200πt)

Since the amplitude at L/2 is due only to the
fundamental, and is equal to 10 µ, we know that

A1 = 10 µ. The last two equations become

ξ(L/4) = 5
√

2 cos (100πt) + A2 cos (200πt)

ξ(3L/4) = 5
√

2 cos (100πt) −A2 cos (200πt)

As a trial solution, we assume that A2 is positive.
Then the maximum displacement of 10 µ at L/4
is reached at t = 0; therefore A2 = (10 − 5

√
2)

µ. The maximum |displacement| at 3L/4, a neg-
ative displacement in this case, is reached at
t = 1/100 sec, when the harmonic has changed
phase by a full 2π, but the fundamental has
changed phase by only π and has therefore be-
come negative. With the above values of A1 and
A2, the displacement at 3L/4 is equal to -10 µ,
in agreement with the problem.

2. French 6-15(a).
This is a bit messy, but bear with it. The
string has length L. Its initial conditions are
y(x, 0) = Ax(L − x) and (∂y/∂t)t=0 = 0. We
write the solution as a Fourier series

y(x, t) =
∞∑

n=1

An sin
(nπx

L

)
cos(ωnt− δn)

We know the solution at t = 0. Define Bn =
An cos δn.

y(x, 0) =
∞∑

n=1

Bn sin
(nπx

L

)

We can now solve for the Bn using Fourier’s
trick:

Bn =
2
L

∫ L

0

Ax(L− x) sin
(nπx

L

)
dx

Integrating by parts once, notice that the surface
term vanishes:

Bn =
2A
nπ

∫ L

0

(L− 2x) cos
(nπx

L

)
dx
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The L term integrates now. It always integrates
to zero.

Bn = −4A
nπ

∫ L

0

x cos
(nπx

L

)
dx

We integrate by parts again, and again the sur-
face term vanishes.

Bn =
4AL

n2π2

∫ L

0

sin
(nπx

L

)
dx

This integrates easily.

Bn = −4AL2

n3π3
cos

(nπx

L

)L

0
=

8AL2

n3π3

∣∣∣∣
n odd

We see that Bn is zero for all even n. We
expected this because the initial condition is
symmetric around the center of the string. Now
we tackle the velocities.

∂y

∂t

∣∣∣∣
t=0

=
∞∑

n=1

An sin
(nπx

L

)
ωn sin(δn) = 0

This equation is satisfied if we simply set all of
the δn = 0, so that sin δn = 0 and cos δn = 1.
This also means that An = Bn. We now have
the full solution. We have rewritten the sum to
only include odd n.

y(x, t) =
∞∑

m=0

8AL2

(2m + 1)3π3
×

× sin
( (2m + 1)πx

L

)
cos(ω2m+1t)

3. French 8-9.
This problem concerns a very important effect
called Doppler broadening. Sodium atoms emit
light of 6000Å. The observed light varies in a
small frequency range of (6000 ± 0.02)Å. This
is caused by the thermal motion of the sodium
atoms. The Doppler effect tells us that

∆λ

λ
=

v

c
=

0.02
6000

= 3.33 × 10−6

This gives the maximum velocity of the atoms
vmax = 1000 m/sec. The thermal velocity is
given by

1
2
m〈v2〉 =

3
2
kT ⇒ T =

m〈v2〉
3k

The constant k = 1.38 × 10−23 J/Kelvin is
Boltzmann’s constant, and the appropriate mass
m ≈ 23mp is just the mass of the sodium atom.
Approximating

√〈v2〉 ≈ vmax, this gives T ≈
900 Kelvin. This effect can be used to measure
the temperatures of objects in astronomy.

4. French 8-12.
The Doppler effect for a moving source and fixed
observer is given by

ν(θ) =
ν0

1 − u
v cos θ

(a.) We want to find the Doppler effect for a
fixed source and a moving observer at velocity
−u. We are going to do this differently than it
was done in French, in order to provide an al-
ternative and perhaps easier way to think about
it. We are going to go into the rest frame of the
wave crests, so the only thing moving will be the
observer and the source. The velocities of the
wave and the observer are

Vw = (v, 0) Vo = (−u cos θ, u sin θ)

Transforming into the rest frame of the wave by
subtracting (v, 0), the velocity of the observer is

Vo = (−v − u cos θ, u sin θ)

The distance between wave crests is just L =
v/ν0, so the rate at which the observer crosses
the wave crests is just the x velocity divided by
this distance. This is the shifted frequency.

ν′(θ) = ν0

(
1 +

u

v
cos θ

)

This trick doesn’t work for light because light
doesn’t have a rest frame. In relativity, there is
a different Doppler formula that applies to both
situations. It uses only the relative velocity of
the source and the observer.
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(b.) We want to know the approximate differ-
ence between the two formulas. We Taylor ex-
pand the first formula, assuming that the speed
is much less than the sound speed, u 
 v.

ν(θ) ≈ ν0

(
1 +

u

v
cos θ +

u2

v2
cos2 θ + · · ·

)

This tells us the approximate difference between
the two Doppler shifted frequencies

ν(θ) − ν′(θ) ≈ ν0
u2

v2
cos2 θ

5. We can use Bernoulli’s equation to find the
velocities of these two flows.

(a.) If we look right as the flow is leaving the
tank, we see that it must be at atmospheric pres-
sure. The stream is arbitrarily thin, so this is
the only possibility. We then just use the grav-
itational potential to find the velocities. If the
hole were at the top of the tank, the velocity
would be zero, so we use this as the constant.

P0 + ρg(H − h) +
1
2
ρv2 = P0 + ρgH

v(h) =
√

2gh

The time it takes to hit the ground is given by
the formula for constant acceleration.

H − h =
1
2
gt2 ⇒ t =

√
2(H − h)

g

In this time, the water travels a horizontal dis-
tance vt, so the distance from the tank is

d(h) =
√

4h(H − h)

(b.) We notice that the previous formula says
that water leaking from a depth h travels the
same distance as water leaking from a depth
H − h.

6. We again apply Bernoulli’s equation. The
air at the leading edge is stagnant, and we
will assume that it is at atmospheric pressure.
Bernoulli’s equation gives

P0 = P +
1
2
ρv2

The maximum velocity occurs when the pressure
is zero. Plugging in P0=105 N/m2 and ρ = 1.2
kg/m3, we find that v =408 m/sec. This is larger
than the speed of sound, vs = 340 m/sec.

7. The gradient ∇f is equal to

∇f = x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z

The x component of ∇ × (∇f) is the differ-
ence between the y and z partial derivatives,
respectively, of the z and y components of ∇f :

(∇× (∇f))x =
∂

∂y

∂f

∂z
− ∂

∂z

∂f

∂y

Interchanging the order of differentiation in ei-
ther of the terms, this expression is seen to vanish
for well-behaved f . By cyclic permutation, the
y and z components of ∇× (∇f) vanish as well.

8. (a.) When the point of observation (x, y, z)
is displaced incrementally by ds, where

ds = x̂dx + ŷdy + ẑdz

points in an arbitrary direction, the change df
in f(x, y, z) is given by the chain rule:

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz

The right-hand side can be rewritten as the dot
product of

∇f = x̂
∂f

∂x
+ ŷ

∂f

∂y
+ ẑ

∂f

∂z

and ds above:

df = ∇f · ds

For a fixed length |ds|, this dot product is great-
est when ds is parallel to ∇f . Therefore, when
df/|ds| is a maximum, the direction of ds will be
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along ∇f . With f = x2 + y2 − z2, this direction
n̂ is

n̂ =
x̂∂f

∂x + ŷ ∂f
∂y + ẑ∂f

∂z

|∇f |
=

x̂2x + ŷ2y − ẑ2z

2
√

x2 + y2 + z2

=
x̂6 + ŷ8 − ẑ10
2
√

9 + 16 + 25

=
x̂3 + ŷ4 − ẑ5

5
√

2

(b.) The surface z(x, y) =
√

x2 + y2 can be
described as

0 = f(x, y, z) = x2 + y2 − z2

This is the same f(x, y, z) as in part (a.). Sup-
pose the point of observation (x, y, z) is displaced
infinitesimally by dv, where dv is on the surface
f = 0. Then we would expect f not to change
at all. However, according to the results of part
(a.),

df = ∇f · dv
Therefore df can vanish only if dv is perpendic-
ular to ∇f . Since dv can be any displacement
which lies on the surface, this requires ∇f to be
perpendicular to the surface. Therefore, the di-
rection of the normal to the surface du in part
(b.) is the same as the direction n̂ of ds in part
(a.), the direction of maximum change in f .

9. The fluid velocity field is

v(x, y, z, t) = (ŷx− x̂y)ω(t)

(a.) The equation of continuity (conservation of
fluid molecules) requires

∂ρ

∂t
+ ∇ · (ρv) = 0

Therefore

∂ρ

∂t
= −ω∇ · (ŷxρ− x̂yρ)

1
ω

∂ρ

∂t
= y

∂ρ

∂x
− x

∂ρ

∂y

(b.) An element of fluid at r⊥ = x̂x + ŷy has a
velocity v = (ŷx− x̂y)ω(t) that is always in the

xy plane and orthogonal to r⊥. Thus the element
is in circular motion about the z axis (to which
r⊥ is perpendicular), with angular velocity

Ω = ẑ
|v|
|r⊥| = ẑω(t)

On the other hand

∇× v = ω(t) ẑ
(∂x

∂x
+

∂y

∂y

)
= 2ẑω(t)

(c.) Suppose that the independent variables
(x, y, z, t) upon which a vector A(x, y, z, t) de-
pends change infinitesimally, by (dx, dy, dz, dt).
Then, by the chain rule, a component of A,
e.g. Ax, changes by an amount

dAx =
∂Ax

∂t
dt +

∂Ax

∂x
dx +

∂Ax

∂y
dy +

∂Ax

∂z
dz

dAz

dt
=

∂Ax

∂t
+

∂Ax

∂x
vx +

∂Ax

∂y
vy +

∂Ax

∂z
vz

=
∂Ax

∂t
+

(
vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)
Ax

dAx

dt
=

( ∂

∂t
+ v · ∇

)
Ax

⇒ dA
dt

=
( ∂

∂t
+ v · ∇

)
A

(This is the convective derivative, yielding the
total time rate of change of A.) In this problem
A = v itself, so

dv
dt

=
( ∂

∂t
+ v · ∇

)
v

= 0 + ω0

(
vx

∂

∂x
+ vy

∂

∂y

)
(ŷx− x̂y)

= ω2
0

(
−y

∂

∂x
+ x

∂

∂y

)
(ŷx− x̂y)

= ω2
0(−yŷ − xx̂)

= −ω2
0r⊥


